SubscriptionRef
A SubscriptionRef<A>
is a specialized form of a SynchronizedRef. It allows us to subscribe and receive updates on the current value and any changes made to that value.
interface SubscriptionRef<A> extends SynchronizedRef<A> { /** * A stream containing the current value of the `Ref` as well as all changes * to that value. */ readonly changes: Stream<A>}
You can perform all standard operations on a SubscriptionRef
, such as get
, set
, or modify
to interact with the current value.
The key feature of SubscriptionRef
is its changes
stream. This stream allows you to observe the current value at the moment of subscription and receive all subsequent changes. Every time the stream is run, it emits the current value and tracks future updates.
To create a SubscriptionRef
, you can use the SubscriptionRef.make
constructor, specifying the initial value:
Example (Creating a SubscriptionRef
)
1import { import SubscriptionRef
SubscriptionRef } from "effect"2
3const const ref: Effect<SubscriptionRef.SubscriptionRef<number>, never, never>
ref = import SubscriptionRef
SubscriptionRef.const make: <number>(value: number) => Effect<SubscriptionRef.SubscriptionRef<number>, never, never>
Creates a new `SubscriptionRef` with the specified value.
make(0)
SubscriptionRef
is particularly useful for modeling shared state when multiple observers need to react to changes. For example, in functional reactive programming, the SubscriptionRef
could represent a portion of the application state, and various observers (like UI components) would update in response to state changes.
Example (Server-Client Model with SubscriptionRef
)
In the following example, a “server” continually updates a shared value, while multiple “clients” observe the changes:
1import { import Ref
Ref, import Effect
Effect } from "effect"2
3// Server function that increments a shared value forever4const const server: (ref: Ref.Ref<number>) => Effect.Effect<never, never, never>
server = ((parameter) ref: Ref.Ref<number>
ref: import Ref
Ref.interface Ref<in out A>
namespace Ref
Ref<number>) =>5 import Ref
Ref.const update: <number>(self: Ref.Ref<number>, f: (a: number) => number) => Effect.Effect<void> (+1 overload)
update((parameter) ref: Ref.Ref<number>
ref, ((parameter) n: number
n) => (parameter) n: number
n + 1).(method) Pipeable.pipe<Effect.Effect<void, never, never>, Effect.Effect<never, never, never>>(this: Effect.Effect<...>, ab: (_: Effect.Effect<void, never, never>) => Effect.Effect<never, never, never>): Effect.Effect<...> (+21 overloads)
pipe(import Effect
Effect.const forever: <A, E, R>(self: Effect.Effect<A, E, R>) => Effect.Effect<never, E, R>
Repeats this effect forever (until the first error).
forever)
The server
function operates on a regular Ref
and continuously updates the value. It doesn’t need to know about SubscriptionRef
directly.
Next, let’s define a client
that subscribes to changes and collects a specified number of values:
1import { import Ref
Ref, import Effect
Effect, import Stream
Stream, import Random
Random } from "effect"2
3// Server function that increments a shared value forever4const const server: (ref: Ref.Ref<number>) => Effect.Effect<never, never, never>
server = ((parameter) ref: Ref.Ref<number>
ref: import Ref
Ref.interface Ref<in out A>
namespace Ref
Ref<number>) =>5 import Ref
Ref.const update: <number>(self: Ref.Ref<number>, f: (a: number) => number) => Effect.Effect<void> (+1 overload)
update((parameter) ref: Ref.Ref<number>
ref, ((parameter) n: number
n) => (parameter) n: number
n + 1).(method) Pipeable.pipe<Effect.Effect<void, never, never>, Effect.Effect<never, never, never>>(this: Effect.Effect<...>, ab: (_: Effect.Effect<void, never, never>) => Effect.Effect<never, never, never>): Effect.Effect<...> (+21 overloads)
pipe(import Effect
Effect.const forever: <A, E, R>(self: Effect.Effect<A, E, R>) => Effect.Effect<never, E, R>
Repeats this effect forever (until the first error).
forever)6
7// Client function that observes the stream of changes8const const client: (changes: Stream.Stream<number>) => Effect.Effect<Chunk<number>, never, never>
client = ((parameter) changes: Stream.Stream<number, never, never>
changes: import Stream
Stream.interface Stream<out A, out E = never, out R = never>
namespace Stream
A `Stream<A, E, R>` is a description of a program that, when evaluated, may
emit zero or more values of type `A`, may fail with errors of type `E`, and
uses an context of type `R`. One way to think of `Stream` is as a
`Effect` program that could emit multiple values.
`Stream` is a purely functional *pull* based stream. Pull based streams offer
inherent laziness and backpressure, relieving users of the need to manage
buffers between operators. As an optimization, `Stream` does not emit
single values, but rather an array of values. This allows the cost of effect
evaluation to be amortized.
`Stream` forms a monad on its `A` type parameter, and has error management
facilities for its `E` type parameter, modeled similarly to `Effect` (with
some adjustments for the multiple-valued nature of `Stream`). These aspects
allow for rich and expressive composition of streams.
Stream<number>) =>9 import Effect
Effect.const gen: <YieldWrap<Effect.Effect<number, never, never>> | YieldWrap<Effect.Effect<Chunk<number>, never, never>>, Chunk<number>>(f: (resume: Effect.Adapter) => Generator<...>) => Effect.Effect<...> (+1 overload)
gen(function* () {10 const const n: number
n = yield* import Random
Random.const nextIntBetween: (min: number, max: number) => Effect.Effect<number>
Returns the next integer value in the specified range from the
pseudo-random number generator.
nextIntBetween(1, 10)11 const const chunk: Chunk<number>
chunk = yield* import Stream
Stream.const runCollect: <number, never, never>(self: Stream.Stream<number, never, never>) => Effect.Effect<Chunk<number>, never, never>
Runs the stream and collects all of its elements to a chunk.
runCollect(import Stream
Stream.const take: <number, never, never>(self: Stream.Stream<number, never, never>, n: number) => Stream.Stream<number, never, never> (+1 overload)
Takes the specified number of elements from this stream.
take((parameter) changes: Stream.Stream<number, never, never>
changes, const n: number
n))12 return const chunk: Chunk<number>
chunk13 })
Similarly, the client
function only works with a Stream
of values and doesn’t concern itself with the source of these values.
To tie everything together, we start the server, launch multiple client instances in parallel, and then shut down the server when we’re finished. We also create the SubscriptionRef
in this process.
1import {2 import Ref
Ref,3 import Effect
Effect,4 import Stream
Stream,5 import Random
Random,6 import SubscriptionRef
SubscriptionRef,7 import Fiber
Fiber8} from "effect"9
10// Server function that increments a shared value forever11const const server: (ref: Ref.Ref<number>) => Effect.Effect<never, never, never>
server = ((parameter) ref: Ref.Ref<number>
ref: import Ref
Ref.interface Ref<in out A>
namespace Ref
Ref<number>) =>12 import Ref
Ref.const update: <number>(self: Ref.Ref<number>, f: (a: number) => number) => Effect.Effect<void> (+1 overload)
update((parameter) ref: Ref.Ref<number>
ref, ((parameter) n: number
n) => (parameter) n: number
n + 1).(method) Pipeable.pipe<Effect.Effect<void, never, never>, Effect.Effect<never, never, never>>(this: Effect.Effect<...>, ab: (_: Effect.Effect<void, never, never>) => Effect.Effect<never, never, never>): Effect.Effect<...> (+21 overloads)
pipe(import Effect
Effect.const forever: <A, E, R>(self: Effect.Effect<A, E, R>) => Effect.Effect<never, E, R>
Repeats this effect forever (until the first error).
forever)13
14// Client function that observes the stream of changes15const const client: (changes: Stream.Stream<number>) => Effect.Effect<Chunk<number>, never, never>
client = ((parameter) changes: Stream.Stream<number, never, never>
changes: import Stream
Stream.interface Stream<out A, out E = never, out R = never>
namespace Stream
A `Stream<A, E, R>` is a description of a program that, when evaluated, may
emit zero or more values of type `A`, may fail with errors of type `E`, and
uses an context of type `R`. One way to think of `Stream` is as a
`Effect` program that could emit multiple values.
`Stream` is a purely functional *pull* based stream. Pull based streams offer
inherent laziness and backpressure, relieving users of the need to manage
buffers between operators. As an optimization, `Stream` does not emit
single values, but rather an array of values. This allows the cost of effect
evaluation to be amortized.
`Stream` forms a monad on its `A` type parameter, and has error management
facilities for its `E` type parameter, modeled similarly to `Effect` (with
some adjustments for the multiple-valued nature of `Stream`). These aspects
allow for rich and expressive composition of streams.
Stream<number>) =>16 import Effect
Effect.const gen: <YieldWrap<Effect.Effect<number, never, never>> | YieldWrap<Effect.Effect<Chunk<number>, never, never>>, Chunk<number>>(f: (resume: Effect.Adapter) => Generator<...>) => Effect.Effect<...> (+1 overload)
gen(function* () {17 const const n: number
n = yield* import Random
Random.const nextIntBetween: (min: number, max: number) => Effect.Effect<number>
Returns the next integer value in the specified range from the
pseudo-random number generator.
nextIntBetween(1, 10)18 const const chunk: Chunk<number>
chunk = yield* import Stream
Stream.const runCollect: <number, never, never>(self: Stream.Stream<number, never, never>) => Effect.Effect<Chunk<number>, never, never>
Runs the stream and collects all of its elements to a chunk.
runCollect(import Stream
Stream.const take: <number, never, never>(self: Stream.Stream<number, never, never>, n: number) => Stream.Stream<number, never, never> (+1 overload)
Takes the specified number of elements from this stream.
take((parameter) changes: Stream.Stream<number, never, never>
changes, const n: number
n))19 return const chunk: Chunk<number>
chunk20 })21
22const const program: Effect.Effect<void, never, never>
program = import Effect
Effect.const gen: <YieldWrap<Effect.Effect<SubscriptionRef.SubscriptionRef<number>, never, never>> | YieldWrap<Effect.Effect<Fiber.RuntimeFiber<never, never>, never, never>> | YieldWrap<...> | YieldWrap<...>, void>(f: (resume: Effect.Adapter) => Generator<...>) => Effect.Effect<...> (+1 overload)
gen(function* () {23 // Create a SubscriptionRef with an initial value of 024 const const ref: SubscriptionRef.SubscriptionRef<number>
ref = yield* import SubscriptionRef
SubscriptionRef.const make: <number>(value: number) => Effect.Effect<SubscriptionRef.SubscriptionRef<number>, never, never>
Creates a new `SubscriptionRef` with the specified value.
make(0)25
26 // Fork the server to run concurrently27 const const serverFiber: Fiber.RuntimeFiber<never, never>
serverFiber = yield* import Effect
Effect.const fork: <never, never, never>(self: Effect.Effect<never, never, never>) => Effect.Effect<Fiber.RuntimeFiber<never, never>, never, never>
Returns an effect that forks this effect into its own separate fiber,
returning the fiber immediately, without waiting for it to begin executing
the effect.
You can use the `fork` method whenever you want to execute an effect in a
new fiber, concurrently and without "blocking" the fiber executing other
effects. Using fibers can be tricky, so instead of using this method
directly, consider other higher-level methods, such as `raceWith`,
`zipPar`, and so forth.
The fiber returned by this method has methods to interrupt the fiber and to
wait for it to finish executing the effect. See `Fiber` for more
information.
Whenever you use this method to launch a new fiber, the new fiber is
attached to the parent fiber's scope. This means when the parent fiber
terminates, the child fiber will be terminated as well, ensuring that no
fibers leak. This behavior is called "auto supervision", and if this
behavior is not desired, you may use the `forkDaemon` or `forkIn` methods.
fork(const server: (ref: Ref.Ref<number>) => Effect.Effect<never, never, never>
server(const ref: SubscriptionRef.SubscriptionRef<number>
ref))28
29 // Create 5 clients that subscribe to the changes stream30 const const clients: Effect.Effect<Chunk<number>, never, never>[]
clients = new var Array: ArrayConstructor
new (arrayLength?: number) => any[] (+2 overloads)
Array(5).(method) Array<any>.fill(value: any, start?: number, end?: number): any[]
Changes all array elements from `start` to `end` index to a static `value` and returns the modified array
fill(null).(method) Array<any>.map<Effect.Effect<Chunk<number>, never, never>>(callbackfn: (value: any, index: number, array: any[]) => Effect.Effect<Chunk<number>, never, never>, thisArg?: any): Effect.Effect<...>[]
Calls a defined callback function on each element of an array, and returns an array that contains the results.
map(() => const client: (changes: Stream.Stream<number>) => Effect.Effect<Chunk<number>, never, never>
client(const ref: SubscriptionRef.SubscriptionRef<number>
ref.(property) SubscriptionRef<number>.changes: Stream.Stream<number, never, never>
A stream containing the current value of the `Ref` as well as all changes
to that value.
changes))31
32 // Run all clients in concurrently and collect their results33 const const chunks: Chunk<number>[]
chunks = yield* import Effect
Effect.const all: <Effect.Effect<Chunk<number>, never, never>[], {
concurrency: "unbounded";
}>(arg: Effect.Effect<Chunk<number>, never, never>[], options?: {
concurrency: "unbounded";
} | undefined) => Effect.Effect<...>
Runs all the provided effects in sequence respecting the structure provided in input.
Supports multiple arguments, a single argument tuple / array or record / struct.
all(const clients: Effect.Effect<Chunk<number>, never, never>[]
clients, { (property) concurrency: "unbounded"
concurrency: "unbounded" })34
35 // Interrupt the server when clients are done36 yield* import Fiber
Fiber.const interrupt: <never, never>(self: Fiber.Fiber<never, never>) => Effect.Effect<Exit<never, never>, never, never>
Interrupts the fiber from whichever fiber is calling this method. If the
fiber has already exited, the returned effect will resume immediately.
Otherwise, the effect will resume when the fiber exits.
interrupt(const serverFiber: Fiber.RuntimeFiber<never, never>
serverFiber)37
38 // Output the results collected by each client39 for (const const chunk: Chunk<number>
chunk of const chunks: Chunk<number>[]
chunks) {40 namespace console
var console: Console
The `console` module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
* A `Console` class with methods such as `console.log()`, `console.error()` and `console.warn()` that can be used to write to any Node.js stream.
* A global `console` instance configured to write to [`process.stdout`](https://nodejs.org/docs/latest-v22.x/api/process.html#processstdout) and
[`process.stderr`](https://nodejs.org/docs/latest-v22.x/api/process.html#processstderr). The global `console` can be used without importing the `node:console` module.
_**Warning**_: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the [`note on process I/O`](https://nodejs.org/docs/latest-v22.x/api/process.html#a-note-on-process-io) for
more information.
Example using the global `console`:
```js
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(new Error('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
const name = 'Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
```
Example using the `Console` class:
```js
const out = getStreamSomehow();
const err = getStreamSomehow();
const myConsole = new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(new Error('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
const name = 'Will Robinson';
myConsole.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to err
```
console.(method) Console.log(message?: any, ...optionalParams: any[]): void
Prints to `stdout` with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to [`printf(3)`](http://man7.org/linux/man-pages/man3/printf.3.html)
(the arguments are all passed to [`util.format()`](https://nodejs.org/docs/latest-v22.x/api/util.html#utilformatformat-args)).
```js
const count = 5;
console.log('count: %d', count);
// Prints: count: 5, to stdout
console.log('count:', count);
// Prints: count: 5, to stdout
```
See [`util.format()`](https://nodejs.org/docs/latest-v22.x/api/util.html#utilformatformat-args) for more information.
log(const chunk: Chunk<number>
chunk)41 }42})43
44import Effect
Effect.const runPromise: <void, never>(effect: Effect.Effect<void, never, never>, options?: {
readonly signal?: AbortSignal;
} | undefined) => Promise<void>
Executes an effect and returns a `Promise` that resolves with the result.
Use `runPromise` when working with asynchronous effects and you need to integrate with code that uses Promises.
If the effect fails, the returned Promise will be rejected with the error.
runPromise(const program: Effect.Effect<void, never, never>
program)45/*46Example Output:47{ _id: 'Chunk', values: [ 4, 5, 6, 7, 8, 9 ] }48{ _id: 'Chunk', values: [ 4 ] }49{ _id: 'Chunk', values: [ 4, 5, 6, 7, 8, 9 ] }50{ _id: 'Chunk', values: [ 4, 5 ] }51{ _id: 'Chunk', values: [ 4, 5, 6, 7, 8, 9 ] }52*/
This setup ensures that each client observes the current value when it starts and receives all subsequent changes to the value.
Since the changes are represented as streams, you can easily build more complex programs using familiar stream operators. You can transform, filter, or merge these streams with other streams to achieve more sophisticated behavior.